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Objective: 

To analyze and demonstrate the coupling of two pendulums hanging from a common stand 

first when attached by a rubber band, and then without. Also to observe the changes in 

coupling when phase differences were varied. 

Description: 

Two rotational Motion Sensors were 

attached to the cross rod which was the 

pendulum stand. The rotational Motion 

sensors were each then attached to a rod 

with a mass at the end. A single rubber 

band was wrapped around the two rods 

connecting them and effectively 

creating a spring. Both rotational 

Motion Sensors were attached to Data Studio and used to graph the motion of the rods. The 

masses were used to change the effective length of the pendulum by moving the center of 

mass up or down along the rod. 

Theory: 

From the equations of motion we have: 

𝑑2

𝑑𝑡2
𝜃𝑎 +

𝑔

𝑙
𝜃𝑎 +

𝐾

𝑀
(𝜃𝑎 − 𝜃𝑏) = 0 

And  

𝑑2

𝑑𝑡2
𝜃𝑏 +

𝑔

𝑙
𝜃𝑏 +

𝐾

𝑀
(𝜃𝑏 − 𝜃𝑎) = 0 

We then want to find values such that the pendulums follow the equations: 

𝜃𝑎 = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙)           and          𝜃𝑏 = 𝐵𝑐𝑜𝑠(𝜔𝑡 + 𝜙) 

Combining these equations gives: 
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For the two-pendulum setup, the solutions for 𝜔2 are: 
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Solving for these, we get the two normal modes for the coupled pendulums are (1, 1) and 

 (1, -1) so 𝐴1 = 𝐵1 and 𝐴2 =  −𝐵2. To achieve equilibrium, the two modes are present in 

equal amounts in each pendulum. At this point all the amplitudes become equal and both 

pendula have equal energy i.e. 

𝜃𝑎 = 𝐴𝑐𝑜𝑠(𝜔1𝑡 + 𝜙) + 𝐴𝑐𝑜𝑠(𝜔2𝑡 + 𝜙) 

𝜃𝑏 = 𝐴𝑐𝑜𝑠(𝜔1𝑡 + 𝜙) − 𝐴𝑐𝑜𝑠(𝜔2𝑡 + 𝜙) 

We can say that 𝜙 = 0 so: 

𝜃𝑎 = 𝐴𝑐𝑜𝑠(𝜔1𝑡) + 𝐴𝑐𝑜𝑠(𝜔2𝑡)          and        𝜃𝑏 = 𝐴𝑐𝑜𝑠(𝜔1𝑡) + 𝐴𝑐𝑜𝑠(𝜔2𝑡) 

Which can then be written as: 

𝜃𝑎 = 2𝐴𝑐𝑜𝑠(𝜔𝑏𝑡)𝑐𝑜𝑠(𝜔𝑎𝑣𝑡)            and          𝜃𝑏 = 2𝐴𝑠𝑖𝑛(𝜔𝑏𝑡)𝑠𝑖𝑛(𝜔𝑎𝑣𝑡)  

 

 



Procedure and Data Analysis: 

We started by matching the frequencies of the pendula as closely as possible using a sample 

rate of 10Hz to provide a suitable resolution of the oscillations. The frequency of the 

pendulums was found to be (2.61 ± 0.01)radian. s−1 

The frequency given by the DataStudio sine-wave fit has units of radians per second. 

The frequency of the symmetric mode is identical to the common frequency of the pendula 

when the rubber-band removed. 

The frequency of the anti-symmetric mode is larger than the frequency of the symmetric 

mode. This is because the rubber-band pulls the pendula together when they reach their peak 

amplitudes i.e. the restoring force of the rubber-band reduces the time period or accelerates 

the pendulums (this was calculated to be 7.57±0.01 radian.s-1). 

The value of K can be measured by hanging a mass off the rubber-band and measuring the 

displacement of the mass and using the equations of force. 

The amplitude of one pendulum increases as that of the other decreases due to conservation 

of energy.  

Moving the rubber-band further up or down along the pendulums changes the restoring force 

of the rubber-band acting on the pendulum. 

The beat frequency was calculated to be 4.96 radian.s-1 using the two frequencies. 

When the rubber-band is removed, the pendulums are still coupled but only very slightly. The 

remaining coupling is because of the common cross rod and the energy transfer through the 

rod. 

Even with arbitrary initial conditions energy transfer takes place until the two pendula reach 

equilibrium. 

For the original part of the experiment we examined the effect of moving rubber-band up and 

down on the rods. 



 A1 A2 Height of the rubber-

band from cross rod 

1 52.1 56.4 9 

2 45.1 43.5 14.5 

3 34.1 35.0 18.3 

4 35.2 34.5 24.5 

 

Error Analysis: 

We make a few assumptions in this experiment that make it inherently inaccurate for 

example: 

- We assume the pendula are identical and have the same natural frequency. It is not 

experimentally viable to get the two pendulums to the same frequency and to be 

identical since inequalities in the locations of the center of mass, the differences in 

mass, differences in initial amplitude, different action of friction on the rotational 

motion sensors can all create variations in the frequency and any initial phase 

difference makes it hard to distinguish a difference in frequencies from a difference 

in phase. 

- We assume the pendula have only one degree of freedom and oscillate in one plane 

only. The rubber-band used for most of the experiment adds an extra force that 

potentially creates an angle between the cross rod and he pendula i.e. the plane of 

oscillations could be at an angle that is not orthogonal to the cross rod. This changes 

the equations of force and energy transfer and creates uncertainties in the 

experimental results. 

- We assume the pendulum rods are massless so the masses of the pendulum rods 

remain unaccounted for. This assumption allows us to assume that hanging the 



masses from an equivalent height from the pivot should give us equal effective 

lengths and therefore equal frequencies, but the rods (which do have mass) could in 

fact have different masses and manufacture (or wear and tear) defects could create 

discrepancies in this assumption too. 

- We assumed that the angles are small and the equations of motion can be linearized 

using 𝑠𝑖𝑛𝜃 ≅ 𝜃. This assumption is inaccurate since the angles were varied by up to 

60 degrees where this assumption no longer holds. This makes the equations we used 

incomplete in this experiment. 

- We assume there is no friction or loss of energy in the system. The loss of energy 

becomes apparent very soon on the graphs in the damping of the pendula. This too is 

not accounted for in the experiment. 


